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The multipath effect and non-line-of-sight (NLOS) reception of global positioning 

system (GPS) signals both serve to degrade performance, particularly in urban areas. 

Although, receiver design continues to evolve, residual multipath errors and NLOS 

signals remain a challenge in built-up areas. It is therefore desirable to identify the 

direct, multipath-affected and NLOS GPS measurements in order improve ranging 

based position solutions. The traditional signal strength-based methods to achieve this, 

however, use a single variable (e.g. C/N0) as the classifier. Because the single variable 

does not completely represent the multipath and NLOS characteristics of the signals, 

the traditional methods are not robust in the classification of signal reception. This 

paper uses a set of variables derived from the raw GPS measurements together with 

an algorithm based on an adaptive neuro fuzzy inference system (ANFIS) to classify 

direct, multipath-affected and NLOS measurements from GPS. Results from real data 

show that the proposed method could achieve rates of correct classification of 100%, 

91% and 84%, respectively, for the LOS, Multipath and NLOS based on a static test 

with special conditions results that are superior to the other three state-of-the-art signal 

reception classification methods. 
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1. INTRODUCTION.  Global Navigation Satellite Systems (GNSS) and, in particular, 

GPS, are used widely for positioning to support many applications and services. The 

multipath effect (resulting from the reception of both the direct and reflected signals) 

and non-line-of-sight (NLOS), or indirect, reception of GPS signals result in degraded 

performance, particularly in built environments such as urban areas. This in turn affects 

the provision of key services such as those designed to improve transport operations 

through intelligent transport systems (ITS). A number of ways have already been 
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developed to mitigate the effects of multipath and NLOS, including antenna design, 

signal processing, observable and measurement based modelling. Residual multipath 

effects remain a challenge, however, and, therefore, the detection of such signals would 

enable appropriate decisions to be made on whether or not to use the measurements for 

positioning.  

Antenna design based methods include choke-ring antennas, dual-polarization and 

antenna array. Although effective in mitigating multipath effects from measurements 

at low elevation angles, such antennas are bulky, heavy and expensive, meaning that 

they are not appropriate for use in location based services. They are therefore mostly 

used in high precision and high accuracy geodetic applications (Tranquilla et al. 1994).  

Signal processing based multipath mitigation was first proposed by Dierendonck et 

al. (1992) based on narrowing the spacing between early and late receiver code 

correlators. Subsequently, a popular auto-correlation function based technologies, 

multipath estimating delay lock loop (MEDLL), was proposed (van Nee et al. 1994). A 

review of these signal-processing-based multipath mitigation techniques can be found 

in Braasch (1996).In addition, numerical optimizations of correlator design, such as the 

Newton method-based fast iterative maximum-likelihood algorithm (FIMLA) 

(Sahmoudi and Amin 2008), and the space-alternating generalized expectation 

maximization algorithm (Fessler and Hero 1994), have also been developed to reduce 

the impact of multipath effects further. Advanced receiver-architecture vector tracking 

is also a promising technique to detect multipath effects (Bhattacharyya and Gebre-

Egziabher 2014; Hsu et al. 2015). Ziedan (2012) has proposed a principal components 

analysis (PCA) and probabilistic neural network based method to deal with multipath 

effects in the adaptive tracking. Sokhandan et al. (2017), meanwhile, have proposed a 

support vector machine (SVM) based adaptive multipath compensation and tracking 

strategy to extract context information about the type of multipath environment and the 

state of motion of a GNSS receiver. Vector tracking, however, requires altering the 

traditional architecture of the GNSS receiver, which is not currently possible for low 

cost GNSS receivers. The signal processing based methods are therefore designed to 

mitigate only certain types of multipath effect, and no single method exists that 

accounts for all these effects.  

Observable and measurement based methods use observables, measurements, 

satellite and signal information to mitigate multipath effects. Such information can be 

used to smooth the measurements. Smoothing techniques are based on the fact that 

carrier phase measurements are less sensitive to multipath signals than code 

measurements. Furthermore, satellite elevation and signal information (such as the 

carrier to noise power density ratio) can be used to apply weighting to the measurements 

in order to contribute to the position solution according to measurement quality in 

relation to multipath effects (Euler and Goad 1991; Kuusniemi 2005). Another way of 

dealing with multipath effects is to integrate GPS with complementary sensors not 

affected by such effects. A common approach is to integrate GPS observables or 

measurements with Inertial Measurement Units (IMU) (Cox 1978). The coupling, or 

integration, could be in the position domain (i.e. using positioning outputs of GPS), 

measurement domains (i.e. using carrier phase or code observables from GPS) or 



tracking loop domain (i.e. using the code/carrier discriminator output of GPS). 

Although GNSS/IMU integration is effective if high grade IMU sensors are used, the 

expense associated with such sensors precludes their use in location based services.  

In the case of NLOS reception, the ranging measurement errors that result from 

NLOS reception are different from those produced by multipath interference, and 

therefore cannot be corrected by most multipath mitigation techniques (Groves et al 

2013). Although it has been shown that the dual-polarization antenna is able to 

detection NLOS reception, such an antenna is expensive and bulky compared with the 

patch antennas, again preventing their use for location based service. (Izadpanah et al. 

2008; Jiang and Groves 2014; Palamartchouk et al. 2015). Another potential solution 

is to apply consistency check, which is based on multipath/NLOS contaminated 

measurement is not consist with other clean measurements (Groves and Jiang 2013). 

Consistency check between pseudorange measurements could detect and exclude 

multipath and NLOS effects when the number of clean measurement is sufficient (Hsu 

et al. 2017b).  

More recently, research has focused on the use of spatial data (e.g. 3D city models) 

to assist in the detection of NLOS reception and to improve positioning, such as GNSS 

shadow matching in built environments (Groves 2011). In these approaches, the 3D 

buildings are used to detect satellite visibility, enabling the NLOS to be used actually 

to improve positioning accuracy, in contrast to the methods that detect and exclude 

NLOS that have the effect of significantly lowering satellite availability for positioning 

(Betaille et al. 2013; Peyraud et al. 2013). Adding NLOS by the prediction of satellites’ 

azimuth and elevation angles, a cross-street accuracy of 5 m (54.3%) can be achieved 

by shadow matching (Wang et al. 2015). Subsequently, the NLOS measurement is 

further corrected using the method called ray-tracing simulation. It has been claimed 

that a positioning accuracy of 4.4 m (1) is achievable for pedestrian applications (Hsu 

et al. 2016). Research has been released illustrating the acceleration of ray tracing 

simulation with an associated enhancement of the 3D building model GNSS positioning 

method (Ziedan 2017). Recently, shadow matching has been integrated with range-

based 3D mapping aided algorithms (Adjrad and Groves 2016; Suzuki 2016). 

 

To use the NLOS, it must be detected correctly. Positioning accuracy is therefore 

highly dependent on the ability to classify the signals correctly. The satellite reception 

classification method is not robust enough, however, to achieve this when using the 

traditional single variable based method (usually C/N0 based), which will always be 

suboptimal, since the status cannot be exactly known when it is determined only by one 

variable, especially in complex city environments. The concept of applying machine 

learning to improve GNSS positioning accuracy and classify measurement types has 

emerged in recent years, and has exhibited superior ability by considering various 

sources of information from the GNSS measurement to improve the successful rate of 

signal reception classification. The general idea is demonstrated in Figure 1. 



 
Figure. 1 Demonstration of the idea for training using a machine learning approach. 

 

The related research can be illustrated as follows. Wang et al. (2013a) proposed the 

Wilcoxon-norm-regressor based on pseudorange residuals to detect biased pseudorange 

measurements. Phan et al. (2013) used elevation and azimuth angles as the key features 

for SVM to mitigate the multipath effect for static applications. Sokhandan et al. (2017) 

extracted variables from the correlators in the receiver signal processing stages to 

classify the different types of scenarios of GNSS receivers. A decision tree based 

approach has also been used to classify LOS and NLOS based on received signal 

strength and elevation angle (Yozevitch et al. 2016). It was indicated the accuracy of 

the classification prediction will be highly dependent on how the tree is designed 

according to the selection of features. It is difficult to obtain a trade-off balancing 

sufficiently high accuracy with sufficiently low computation load with this decision tree 

algorithm, since the features have to be selected manually. If we could design an 

algorithm which is able to choose the related features automatically, however, based on 

all the known representative variables and then use these related features for the 

classification algorithm that would improve the LOS/NLOS classification performance.  

This paper develops a novel adaptive neuro fuzzy inference system (ANFIS) based 

algorithm to classify the received signals using the known representative variables from 

GPS raw measurements: i.e. the 1) received signal strength (RSS), 2) temporal 

difference of received signal strength (∆𝑅𝑆𝑆 ), 3) horizontal dilution of precision 

(HDOP), 4) vertical dilution of precision (VDOP), 5) satellite elevation angle (EA), 6) 

azimuth angle (AA), 7) pseudorange residual ( 𝜂 ), 8) consistency between delta 

pseudorange and pseudorange rate (𝜁) and 9) number of visible satellites (NS). The 

ANFIS is a machine learning method that uses a combination of neural network and 

fuzzy logic to produce a more reliable output by considering various input sources. The 

application of ANFIS varies from different disciplines, such as disease diagnosis, 

control engineering and share price forecasting etc. (Ubeyli 2009; Jilani et al. 2015; 

Wei 2016). It potentially has great advantages over the other machine learning methods 

for the GPS signal reception classification application. For example, as mentioned in 

Pradhan (2013), the ANFIS based models have exhibited superior predictive ability 

than the other machine learning methods (such as decision tree and SVM) in landslide 

susceptibility mapping. In the training phase, the algorithm is aided by ray-tracing 
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simulation and a 3D city model for offline data labelling. PCA is then used to extract 

the principal components, which are fed into the ANFIS based training algorithm to 

output the Fuzzy Inference System (FIS) rules. The variables captured in real-time are 

processed based on the extraction of PCA features, and are then fed into the FIS rules 

in order to output the classification results. The designed ANFIS based algorithm 

requires no additional hardware costs, and is therefore suitable for city based 

applications with low-cost GNSS receivers. The method is also easily extendable to 

multi-constellation GNSS for practical implementation. The multi-variable based 

classification, considering various sources of information from GPS measurements, has 

the potential to provide a robust signal reception classification, and therefore, address 

the limitations of the current single variable based classification approach.  

2. ALGORITHM DESIGN.    

2.1. Process Overview.  Flowchart of the ANFIS based LOS/Multipath/NLOS 

classification is presented in Figure 2. 
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Figure 2. The Flow Diagram of the Algorithm 

First, the offline dataset is created, including a large amount of LOS, multipath and 

NLOS data. The LOS data is collected and labelled for the GPS measurements from a 

GPS reference station, which is in an open area, therefore offering clean data. The 

multipath and NLOS data are collected in a densely built-up area in static mode, and 

labelled based on the ray-tracing and 3D building model (Section 3.1). PCA is then 

applied to extract the relevant combination of variables for dimension reduction 

(Section 2.2). Based on the dataset, the ANFIS based training is carried out to output 

the trained FIS rules (Section 2.3). These rules are then used together with the principal 

components extracted from the actual real-time measurements by FIS for classification 

of the signals in terms of LOS, multipath and NLOS. 

2.2. Determination of Variables for GPS LOS, Multipath and NLOS Signal 

Classification.   



2.2.1 Derivation of GPS Variables from Raw Data. The raw data consist of the 

pseudorange and carrier phase measurements, the carrier to noise ratio, and the Doppler 

shift frequency in the RINEX format (Gurtner 1994). It is therefore assumed in this 

paper that the potential features extracted from the GPS raw data can be obtained from 

most new GNSS devices. The received GPS signal contains a variety of information 

that can be used to determine signal reception. These differences can be distinguished 

by the careful application of a number of variables as follows.  

RSS: It is usually represented by C/N0. The effect of signal reflection and additional 

travel time is to increase the signal propagation loss. C/N0 is, therefore, commonly used 

in the mitigation of multipath effects (Hartinger and Brunner 1999).  

∆𝑹𝑺𝑺: Due to the estimation of received signal strength in the receiver tracking loop, 

the received signal strength of multipath and NLOS could increase if the antenna stays 

static. The temporal difference in the received signal strength is calculated as: 

 

                   ∆𝑅𝑆𝑆𝑘
(𝑖)

= 𝑅𝑆𝑆𝑘
(𝑖)

− 𝑅𝑆𝑆𝑘−1
(𝑖)

                      (1) 

 

where i is the satellite and k the epoch. As shown in previous research, the speed of the 

antenna is strongly related to the change rate of the multipath effect. (Kubo et al. 2017). 

HDOP and VDOP: HDOP and VDOP indicate the strength of the geometric 

distribution of satellites in relation to the user’s horizontal and vertical positioning 

dimensions, respectively. Conventionally, positioning error is closely related to the 

product of the strength of the geometric distribution (i.e. DOP) and the measurement 

error. In addition, areas with strong multipath and NLOS effects tend to have larger 

DOP values, mainly because of the surrounding physical features.  

EA and AA: The measurements transmitted from higher elevation angles experience 

less multipath effects. It is therefore common to use the elevation angle as a weighting 

metric to reduce the multipath effect on the positioning accuracy (Euler and Goad 

1991).  

In addition to the variables above, the consistency of the measurements should be 

considered, including pseudorange residual and the consistency between delta 

pseudorange and pseudorange rate.  

𝜼: Least squares estimation is a basic optimization method used for state estimation. 

The receiver state is estimated as: 

 

𝑟 = (𝐺𝑇𝐺)−1𝐺𝑇𝜌                                 (2) 

where 𝑟 is the receiver state, including three-dimensional position and the clock offset 

between the receiver and GPS system time. 𝜌 denotes the pseudorange measurements. 

𝐺 denotes the design matrix consisting of the unit LOS vector between the satellite and 

receiver. The inconsistency between the pseudorange measurements represented by 𝜂 

is calculated as: 

 

𝜂 = 𝜌 − 𝐺 ∙ 𝑟                                  (3) 



 

Hsu et al. (2017b) have shown that the pseudorange residual could potential used as 

an indicator to exclude the multipath and NLOS signal if the number of measurements 

is sufficient.  

𝜻: The pseudorange and Doppler shift are estimated by the delay and frequency lock 

loops, respectively. This is the reason why they are independent if their minor cross-

correlation is neglected. Delta pseudorange indicates the change of pseudorange 

between two epochs. It is calculated by: 

 

              ∆𝜌𝑘
(𝑖)

= 𝜌𝑘
(𝑖)

− 𝜌𝑘−1
(𝑖)

                            (4) 

 

where 𝜌 is the pseudorange measurement and k the time in seconds. The pseudorange 

rate �̇� is the change of pseudorange between two epochs. It is calculated from the 

Doppler shift as: 

 

   �̇�(𝑖) =
𝑐(𝑓𝐷𝑜𝑝𝑝𝑙𝑒𝑟

(𝑖)
)

𝑓𝐿1
+ (𝑣𝑥

(𝑖)
∙ 𝑢𝑥

(𝑖)
+ 𝑣𝑦

(𝑖)
∙ 𝑢𝑦

(𝑖)
+ 𝑣𝑧

(𝑖)
∙ 𝑢𝑧

(𝑖)
)       (5) 

 

where 𝑓𝐷𝑜𝑝𝑝𝑙𝑒𝑟
(𝑖)

 is the Doppler shift in Hz, c the speed of light, fL1 the GPS L1 band 

carrier frequency of 1575.42 MHz, v is the speed of the satellite, u is the unit LOS 

vector between the satellite and receiver. Thus, their difference can be calculated as:  

 

                  𝜁 = |𝛥𝜌 −  �̇� 𝛥𝑡|                              (6) 

 

where ∆𝑡 is the time difference between two epochs.  

NS: The number of the satellites tracked by the GPS receiver could be easily obtained 

from the National Marine Electronics Association (NMEA) GPGGA message. 

The nine variables are the inputs to the feature extraction algorithm. 

2.2.2 Feature Extraction Using Principal Components Analysis. PCA is applied to 

the GPS variables for pre-processing to extract the key features, reduce the dimensions 

and, therefore, simplify the rules for the ANFIS in the next step. The details of PCA are 

in Smith (2002). The first four Principal Components (PCs) extracted, which are linear 

combinations of the input GPS variables, represent 96.82% of the whole measurement 

information are shown in Figure 3. The blue line indicates the value of the accumulated 

percentage of the first 𝑚 PCs. In this figure, we have obtained the first four PCs, which 

contribute to 96.82% of the whole features. Table 1 has shown the links between the 

GPS variables and the extracted PCs. The nine derived GPS Variables, mentioned in 

section 2.2.1 are denoted as 𝑥1 ... 𝑥9 respectively. The values within Table1 show the 

weights of the defined variable for the corresponding PC. Positive values indicate a 

positive correlation of the variables to the corresponding PC, while negative values 



indicate a negative correlation. The larger the value of the corresponding variable, the 

more importance of the variable for the PC. Therefore, the linear combination equations 

could be derived for the first four PCs based on Table1. It is indicated that PC1 is mainly 

the linear combination of the number of satellites and C/N0. PC2 is mainly formed by 

the linear combination of the azimuth angle. PC3 is mainly formed by the linear 

combination of the elevation. PC4 is mainly formed by the C/N0 and the number of 

satellites.  

 

Figure 3. The first four PCs extracted and the accumulated variation represented by each PC  

Table 1 The relationship between the GPS variables and the extracted PCs 

 

Variable 

Name 
Variable Principal Component 

  PC1 PC2 PC3 PC4 

𝑥1 RSS 0.517277 0.247048 0.457374 0.56531 

𝑥2 ∆𝑅𝑆𝑆 -0.01006 -0.08638 -0.23553 -0.35748 

𝑥3 HDOP -0.1284 -0.00479 0.025696 0.111117 

𝑥4 VDOP -0.06398 -0.00234 0.025046 0.085101 

𝑥5 EA -0.24635 -0.03352 0.8483 -0.46645 

𝑥6 AA -0.19563 0.962334 -0.10485 -0.15625 

𝑥7 𝜂 -0.00347 0.00926 -0.00656 -0.02479 

𝑥8 𝜁 0.000425 0.000393 0.000871 -0.00204 

𝑥9 NS 0.782795 0.064657 -0.05827 -0.53893 



2.3. ANFIS based Classification Model.  Generally, ANFIS is the integration of neural 

network (NN) architectures with FIS. It is able not only to take linguistic rules from 

human experts, but also to adapt itself using input-output data to achieve better 

performance. Mamdani and Sugeno are two types of basic fuzzy systems. In these 

systems, the first two parts of the fuzzy inference process, fuzzifying the inputs and 

applying the fuzzy operator, are the same. The main difference between Mamdani and 

Sugeno is that the Sugeno output membership functions are either linear or constant. In 

ANFIS, therefore, Sugeno type is used since it can output linear or constant membership 

functions (Jang 1993). 

From our initial analysis, although the classification accuracy could be improved if 

we increase the use of PCs, the similar accuracy results are obtained by using 4PCs and 

5PCs. However, the computation load of 5PCs is much higher than that of 4PCs. 

Therefore, 4 PCs are adopted for our ANFIS algorithm. The five layers for the 

generated structure of the ANFIS based classification are presented in Figure 4.  

i=(1  n)

PC1

PC4

A1

A TT

TT

N

N
C1

Cn

f

PC1 PC2 PC3 PC4

PC1 PC2 PC3 PC4

...

...

...

Layer1 Layer2 Layer3 Layer4 Layer5

...

...

......

 

Figure 4. Structure of the ANFIS based GPS LOS, multipath and NLOS signal classification. 

Layer 1 assumes that every node  𝑖 in this layer is shown as a square with a node 

function. 

              𝑂𝑖
1 = 𝜇𝐴𝑖

(PC1)                            (8) 

where, PC1 is the input of node 𝑖, and 𝐴𝑖 is the linguistic lable (e.g. small, medium, 

large, very large) with node 𝑖. 𝑂𝑖
1 is the membership function of 𝐴𝑖  and it specifies 

the degree to which the given PC1 satisfies the quantifier 𝐴𝑖 . In our case, the initial 

membership functions 𝜇𝐴𝑖
(PC1) are set as Gaussian function with maximum value 

equal to 1 and minimum value equal to 0 based on the characteristics of the input 

information. 

    𝜇𝐴𝑖
(PC1) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (PC1; 𝜎, 𝑐) = e𝑒

−
(PC1−𝑐)2

2𝜎2
           (9) 



where 𝑐 is the parameter to determine the centre of the membership function and 𝜎 

determines the width of the curve. As the values of these parameters change, the 

Guassian membership functions vary accordingly, thus exhibiting various forms of 

membership functions on linguistic label 𝐴𝑖.  

PC2, PC3, PC4 and their corresponding initial membership functions  𝜇𝐵𝑖
(PC2), 

𝜇𝐶𝑖
(PC3) and 𝜇𝐷𝑖

(PC4) are defined based on the same method. The initial rule could 

then be extracted based on the first-order Sugeno fuzzy model (Takagi and Sugeno, 

1983). 

𝑓𝑖 = 𝑝𝑖 ∗ PC1 + 𝑞𝑖 ∗ PC2 + 𝑟𝑖 ∗ PC3 + 𝑠𝑖 ∗ PC4 + 𝑡𝑖            (10) 

where, the membership functions will be modified along with the parameters 𝑝1, 𝑞1, 

𝑟1 , 𝑠1 and 𝑡1  during the following NN training. 𝑓𝑖  is the initial 𝑖 -th rule. The 

parameters in this layer are considered as the premise parameters.  

In Layer 2, every node is a circle node labelled ∏ , which multiplies the incoming 

signals and sends the product out. Each node in this layer calculates the firing strength 

of each rule via multiplication, noted as 𝑤𝑖 . In our case, we use the AND T-norm 

operator here, given by, 

𝑂𝑖
2 = 𝑤𝑖 = 𝜇𝐴𝑖

(PC1) ∗ 𝜇𝐵𝑖
(PC2) ∗ 𝜇𝐶𝑖

(PC3) ∗ 𝜇𝐷𝑖
(PC4), 𝑖 = 1, 2, 3, 4 (11) 

In Layer 3, every node is a circle node labelled N. The 𝑖 th node of this layer 

calculates the ratio of the 𝑖th rule’s firing strength to the sum of all the rules’ firing 

strengths, which is represented by �̅�𝑖. 

    𝑂𝑖
3 = �̅�𝑖 =

𝑤𝑖

𝑤1+𝑤2+𝑤3+𝑤4
, 𝑖 = 1, 2, 3,4                    (12) 

In Layer 4, the multiplication of the input from Layers 3 and 1 is implemented, given 

by: 

𝑂𝑖
4 = �̅�𝑖𝑓𝑖

′ = �̅�𝑖(𝑝𝑖
′ ∗ PC1 + 𝑞𝑖

′ ∗ PC2 + 𝑟𝑖
′ ∗ PC3 + 𝑠𝑖

′ ∗ PC4 + 𝑡𝑖
′)   (13) 

where �̅�𝑖  is the output of layer 3 and {𝑝𝑖
′ 𝑞𝑖

′ 𝑟𝑖
′ 𝑠𝑖

′ 𝑡𝑖
′}  is the parameter set. 

Parameters in this layer are called consequent parameters, which have been modified 

after NN training. 𝑓𝑖
′
 here is the output of the 𝑖-th rule. 

Layer 5 computes the overall outputs as the summation of all incoming signals.  

            ∑ �̅�𝑖𝑓𝑖𝑖 =
∑ 𝑤𝑖∗𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
                        (14) 

Subtractive clustering is applied for the initial FIS design in order to reduce the 

computation complexity (Chiu, 1994). In addition, during the learning process, the 

premise parameters in Layer 1, and the consequent parameters in the Layer 4, are tuned 

until the desired response of the FIS is achieved. 



3. FIELD TEST AND RESULTS ANALYSIS.  

3.1. Experiment Setup – Data Collection, Labelling and Processing.  

We created five datasets collected from four different locations. The relationships 

between these datasets are depicted in Figure 5.  
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Figure 5 The relationship of the datasets in the field test 

 

To create the combined dataset D0, two types of data are collected. One is collected 

in location A from an urban canyon (NLOS and multipath) and the other is collected 

from location R in the SatRef HKSC station (LOS). To record a large amount of 

multipath and NLOS data, a static experiment was carried out in location A, a densely 

built-up area in Hung Hom, Hong Kong. The left and middle panels of Figure 6 show 

the environment in which the data for location A were collected. The antenna was 

attached to a pole out of a window. A commercial GPS receiver, u-blox NEO-M8T, 

was deployed to collect multipath and NLOS data. 24 hours of raw GPS measurements 

were collected. In this dataset, and because of the environment, most of the 

measurements were affected by the buildings in the vicinity. In other words, the urban 

dataset should consist predominantly of multipath and NLOS measurements. 

A ray-tracing method to identify the signal reception types is applied for labelling the 

multipath and NLOS signals in the urban canyons. The principle of ray-tracing in GPS 

is to use known satellites, reflector and receiver geometry to trace the direct and 

reflecting paths (Lau and Cross, 2007). Satellite positions can be estimated from the 

broadcast ephemeris. A 3D building model was used to search for reflectors. The ground 

truth was provided by the topographic map from the Land Department of the HK 

government with the 2D accuracy of 20cm. The height was determined from Google 

map plus the height of the equipment.  

Once the positions of the satellite, reflector and receiver were known, ray-tracing was 

performed. The right panel of Figure 6 shows the skyplot with building sites. This 



skyplot was generated using ray-tracing simulation and a 3D building model. The grey 

area indicates where the direct transmission was blocked according to the building 

models. If the elevation and azimuth angles of a satellite were blocked according the 

tailored skyplot, its measurements were labelled as NLOS. Otherwise, they were 

labelled as multipath, i.e. we assume that all non-NLOS measurements are multipath. 

Regarding LOS (clean) GPS data, the HK Land Department has established a GPS 

network called SatRef to provide differential corrections for HK users. The archived 

RINEX data of the location R, which is the SatRef HKSC station, were used as the LOS 

data because it is located in a clear environment. 24 hours of clean data were collected 

with a measurement update interval of 30 seconds.  

The training dataset D1 is randomly selected from the dataset D0 at first and the 

testing dataset D2 is randomly selected from the rest of the dataset D0 (exclude D1). 

Although some of the variables will be correlated over time, yet the time dependency 

of the data does not affect the ANFIS performance, since the algorithm treats each 

epoch as an independent event. The training dataset, D1, contained 24,000 

measurement samples, with nine variables for each sample, of which a third each were 

labelled as LOS/multipath/NLOS data (labelled by the 3D map and ray tracing), were 

processed with PCA to extract the four principal components to feed the ANFIS for 

offline training. Then the ANFIS rules were extracted from this training.  

The testing dataset, D2, contained 24,000 measurement samples, with nine variables 

for each sample, of which a third each were LOS, multipath and NLOS (reference label 

- labelled by the 3D map and ray tracing). To determine the performance of the input 

testing dataset, we first created a reference label called ‘unknown’, manually deleting 

the labelled signal reception in advance. We then marked the signal reception as 

‘unknown’ for the test set and processed this with PCA, and then fed the extracted 

features into the ANFIS rules trained from the dataset D0. We then compared the results 

from the ANFIS predicted signal reception with the reference label to compute the 

accuracy. In order further to verify the validity of the extracted rules, two more testing 

datasets collected from other locations were also used to feed the rules. One testing 

dataset, D3, was collected from location B, which is close to location A in the urban 

canyon, while the other testing dataset, D4, was collected from location C, which is 

about three blocks away from location A in the urban canyon, see Figure 7. The 

summary of the datasets is shown in Table2.  

Table 2 The summary of the datasets  

Dataset ID D0 D1 D2 D3 D4 

Dataset Type Combined Training Testing Testing Testing 

Total samples 96992 24000 24000 25033 11572 

LOS (labelled as 1) 25987 8000 8000 0 0 

Multipath (labelled as 0) 18164 8000 8000 8830 3087 

NLOS (labelled as -1) 52841 8000 8000 16203 8485 

 



  

Figure 6. The left panel indicates the installation of the patch antenna, the middle panel 

illustrates the data collection environment and the right panel indicates the skyplot with building 

sites used to label NLOS and multipath measurements 

 

Figure 7. GPS data collection environment for location B (left) and location C (right) 

3.2 Results Comparison and Analysis. Figure 8 compares the results from the 

ANFIS prediction with the reference label (signal reception labelled by the 3D map and 

ray-tracing) based on dataset D2. It is clear that the LOS signals can be identified with 

a high accuracy of 100%, while the errors of classification are entirely distributed in 

the multipath and NLOS areas. The predicted values are further rounded to the closest 

value of 1, 0 or -1. For example, if the ANFIS predicted value is within the interval of 

[-0.5, 0.5], it will be rounded to the value 0 (multipath). Some NLOS measurements 

were misclassified as multipath in the experimental results. The reason for the errors 

distributed in the multipath and NLOS areas are attributable to 3D map border errors 

and scattered reflection in the labelling stage. In this paper, the shapes of the buildings 

are just considered to be cuboid, whereas in reality the roofs of some buildings are likely 

to have different shapes, errors may be induced during the labelling stage when we are 

using the ray-tracing method. In addition, we don't consider the scattered reflection 

when using ray-tracking, which means we assume the signal could only be reflected 

once during the propagation. 

Patch Antenna

NLOS

Multipath



 

Figure 8. Comparison of the ANFIS predicted results for testing dataset D2 and the labelled 

reference. 1, 0 and -1 of y-axis denote LOS, multipath and NLOS for the output variable, 

respectively. 

The following paragraphs compare the proposed ANFIS based algorithm with other 

state-of-the-art algorithms for signal reception identification based on different testing 

datasets. Specifically, Decision Tree and SVM, two typical machine learning methods 

that could be used for the identification of satellite visibility (Yozevitch et al., 2016, 

Hsu, 2017a), both for multi-variable based classification and traditional single C/N0 

based classification, are compared with the ANFIS-based algorithm designed here.  

The confusion matrix of the LOS, multipath and NLOS (1, 0 and -1) classification 

results for different algorithms based on the testing datasets D2 are listed and compared 

in Table 3. The rows labelled Accuracy is calculated as the ratio (as a percentage) of 

the number of correctly detected activities to the total number of known activities 

(Blasch et al 2011). It is obvious that the proposed ANFIS algorithm outperforms 

Decision Tree, SVM and traditional C/N0 based classification in the GPS signal 

reception classification, with a total classification accuracy of 91.8%. NLOS detection 

accuracy is calculated as the ratio (as in percentage) of the number of instances correctly 

classified as NLOS to the total number of known NLOS instances, which is labelled 

NLOS. In particular, the ANFIS based algorithm significantly improves the accuracy 

of the NLOS detection with an accuracy of 91.1%, while it is 49.5%, 65.1% and 64.9% 

for the decision tree, SVM and single C/N0 based algorithms. 

The multipath detection accuracy is calculated as the ratio (as a percentage) of the 

number of instances correctly classified as multipath to the number of total known 

instances of multipath, which is labelled multipath. For multipath detection accuracy, 

the ANFIS also has a high detection accuracy of 84.1%. Although the decision tree 

based method performs slightly better with a detection accuracy of 89.5%, it also has a 

higher number of misdetections, where NLOS signals are incorrectly identified as 

multipath. It is also noted that the overall performance of the classification accuracy for 

the multi-variable based algorithms (Proposed ANFIS, Decision Tree and SVM) is 

superior to the single C/N0 based algorithms.  



Table 3: Confusion matrix of LOS (noted as 1) , multipath (noted as 0) and NLOS (noted as -

1) classification results for testing dataset D2  

 Algorithms Predicted Results 

Proposed ANFIS Decision Tree 

-1 0 1 -1 0 1 

Label 

Results 

-1 7291 709 0 3963 4036 1 

0 1269 6731 0 837 7163 0 

1 0 0 8000 0 0 8000 

Accuracy 91.8% 79.7% 

Accuracy for each class -1 0 1 -1 0 1 

91.1% 84.1% 100% 49.5% 89.5% 100% 

 SVM C/No based Classification 

-1 0 1 -1 0 1 

Label 

Results 

-1 5206 2793 1 13499 6603 708 

0 1995 6005 0 3152 3339 1902 

1 0 0 8000 0 779 10018 

Accuracy 80.1% 67.1% 

Accuracy for each class -1 0 1 -1 0 1 

65.1% 75.1% 100% 64.9% 39.8% 92.8% 

 

Although the proposed ANFIS based algorithm has superior performance based on 

the testing dataset D2, more testing databases from other locations were used to verify 

the validity of the proposed algorithm. As we have mention in section 3.1, dataset D3 

and dataset D4 were collected to feed the extracted rules from training dataset D1 to 

identify the GPS signal reception classification. Since locations B and C are both in the 

urban canyon, we can only obtain the NLOS and multipath signals. The labelling of 

NLOS and multipath is also based on the 3D city model and ray-tracing introduced in 

section 3.1. It should be noted that it is difficult for us to get NLOS, LOS and multipath 

data in one environment. Even if this kind of environment exists, it would still not be 

possible to label the data based on the current 3D city model and ray-tracing based 

method as one cannot determine the ‘true’ LOS existing in the area where multipath 

and NLOS exist. 

The classification accuracy based on different algorithms for the testing datasets D3 

and D4 are listed and compared in Table 4. The ANFIS has a similar performance as 

SVM but with a higher calculation speed. ANFIS will therefore be more suitable than 

the SVM for real-time applications. The classification accuracy of the ANFIS based 

results for datasets D3 and D4 is much worse than it is in the case of dataset D2, which 

indicates the data sensitivity of the proposed algorithm. In addition, we have found that 

when conducting a PCA process on the datasets D3 and D4, although the main 

components in the PCs were the same as they were in D0, D1 and D2, the percentages 



for the main PCs vary across the different collecting locations. Furthermore, we have 

also found that if we use parts of the data from D3 or D4 for training and the rest for 

testing, respectively, the proposed ANFIS could still perform with very high accuracy. 

This means that for the proposed ANFIS algorithm, if the training and testing data are 

from the same dataset, highly accurate classification results can be obtained. That bring 

us to the idea that the rules extracted from the ANFIS could not be suitable for different 

environments due to changing the built environment factors, such as the materials of 

the building surface. This suggests that real-time on-line training algorithms may be a 

logical next step in this line of research.  

Table 4: The Multipath (noted as 0) and NLOS (noted as -1) classification results for testing 

dataset D3 and D4 

Algorithms for 

Comparison  

Proposed 

ANFIS 

Decision Tree SVM C/No based 

Classification 

Class Type -1 0 -1 0 -1 0 -1 0 

D3 Accuracy 73.0% 56.2% 75.4% 64.8% 

Accuracy for 

each class 

76.6 

% 

66.4 

% 

50.8 

% 

66.2 

% 

80.6 

% 

66.2 

% 

100 

% 

0.3 

% 

D4 Accuracy 71.5% 53.2% 71.2% 71.9% 

Accuracy for 

each class 

64.2 

% 

91.5 

% 

39.3 

% 

91.4 

% 

65.7 

% 

86.5 

% 

96.8 

% 

3.8 

% 

 

4. CONCLUSION AND FUTURE WORK. This paper has presented an ANFIS based 

multi-variable based GPS measurement classification algorithm for the identification 

of LOS, multipath and NLOS measurements by considering the known representative 

variables from GPS raw measurements. The experimental results show that the 

proposed algorithm delivers an overall detection accuracy of 91.76% using static test 

based on the testing datasets from the same locations as the training datasets, with 

91.1% and 84.1% for the NLOS and multipath classification accuracy respectively. 

This is significantly higher than the other three approaches (i.e. decision tree, SVM and 

C/N0 based classification), whose overall performances range from 67.1% to 80.1%. 

For the testing results from datasets D3 and D4, however, which are not collected from 

the same location as the training data D1, the changing of the environment degraded 

the algorithm performance, pointing to the sensitivity of the algorithm to such issues.  

In the future, an online data training mechanism will be combined with the ANFIS 

based decision system to build a real-time applicable system to achieve high 

classification accuracy. In addition, the ANFIS classifier will be collaborated with 

consistency-check to exclude the multipath/NLOS measurements from the GPS single 

point positioning.  
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